Weed Image Classification using Wavelet Transform, Stepwise Linear Discriminant Analysis, and Support Vector Machines for an Automatic Spray Control System

نویسندگان

  • Muhammad Hameed Siddiqi
  • Seok-Won Lee
  • Adil Mehmood Khan
چکیده

We tested and validated the accuracy of wavelet transform along with stepwise linear discriminant analysis (SWLDA) and support vector machines (SVMs) for crop/weed classification for real time selective herbicides systems. Unlike previous systems, the proposed algorithm involves a pre-processing step, which helps to eliminate lighting effects to ensure high accuracy in real-life scenarios. We tested a large group of wavelets (46) and decomposed them up to four levels to classify weed images into weeds with broad leaves versus weeds with narrow leaves classes. SWLDA was then employed to reduce the feature space by extracting only the most meaningful features. Finally, the features provided by SWLDA were fed to the SVMs for classification. The proposed method was tested on a database of 1200 samples, which is a much larger database size than that studied previously (200-400 samples). Using confusion matrices, the crop/ weed classification results obtained using different wavelets at different decomposition levels were compared, and this approach was also compared with existing techniques that use statistical and structural approaches. The overall classification accuracy obtained using the symlet wavelet family was 98.1%. These results represent an improvement of 14% in performance compared with existing techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminant Gaborfaces and Support Vector Machines Classifier for Face Recognition

Feature extraction, discriminant analysis, and classification rule are three crucial issues for face recognition. This paper presents one method, named GaborfaceSVM, to handle three issues together. For feature extraction, we utilize the Gabor wavelet transform on grey face image to extract Gaborfaces. A Modified Enhanced Fisher Discriminant model is used to reinforce discriminant power of Gabo...

متن کامل

Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)

Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...

متن کامل

Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features

Mammograms are one of the most widely used techniques for preliminary screening of breast cancers. There is great demand for early detection and diagnosis of breast cancer using mammograms. Texture based feature extraction techniques are widely used for mammographic image analysis. In specific, wavelets are a popular choice for texture analysis of these images. Though discrete wavelets have bee...

متن کامل

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014